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Abstract

The momentum and heat transfer in the laminar boundary layer of a non-Newtonian power-law fluid flowing over a
flat plate, which is moving in the direction opposite to the uniform main stream, and with arbitrary fluid injection/suction
along the plate surface, are analyzed. The partial differential equations are decomposed into a sequence of ordinary
differential equations using the Merk—Chao series to obtain universal velocity and temperature functions that are
independent of the fluid injection/suction distribution profile. Results are tabulated as a function of the problem
parameters. Friction coefficients and Nusselt numbers are calculated for constant fluid injection/suction along the plate.
© 1999 Elsevier Science Ltd. All rights reserved.

Nomenclature x stream wise coordinate along surface measured from
¢; friction coeflicient defined by equation (40) the slot

C’p specific heat at constant pressure y coordinate normal to plate surface.

f dimensionless stream function defined in equation

(10)

Greek symbols

o thermal diffusivity

n dimensionless variable defined in equation (8b)

0 dimensionless temperature defined in equation (26)
/A plate velocity ratio defined in equation (17a)
A
A,

k thermal conductivity

L reference length

n power-law exponent defined in equation (4)

Nu Nusselt number defined in equation (42)

Pr  generalized Prandtl number defined in equation (30)

Re generalized Reynolds number defined in equation injection parameter defined by equation (16)

parameter in the energy equation defined by equa-

9 .

©) ’ tion (29)

T temperature . . . . .
u fluid velocity component in x-direction U, consistency index for non-Newtonian viscosity

defined in equation (4)

¢ dimensionless variable defined in equation (8a)
p density

7,. shear stress defined in equation (4)

U, plate velocity in the negative x-direction
U,, main stream velocity

v fluid velocity component in y-direction

v, constant injection velocity at the wall

V.(x) injection velocity at the plate surface Y stream function defined in equations (7a,b).
V(¢) dimensionless injection distribution defined in
equation (13) Subscripts

i subscript designating universal functions
w  subscript designating the conditions at the plate sur-

face
* Corresponding author. Tel.: 001 419 530 8223; fax: 001 419 co subscript designating the conditions in the main
530 8206; e-mail: djeng@uofto2.utoledo.edu stream.

0017-9310/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved.
PII: S0017-9310(98)00360-3



2838 J.H. Rao et al. | Int. J. Heat Mass Transfer 42 (1999) 2837-2847

1. Introduction

A majority of non-Newtonian fluids fall into the time-
independent classification, which includes power-law flu-
ids. Power-law fluids, which have been called Ostwald-de-
Waele fluids by some authors, have been well examined
because the constitutive equation for such a fluid not
only gives a good expression for a large portion of non-
Newtonian fluids but also encompasses a Newtonian
fluid as well. For a non-Newtonian fluid, the viscous
stress is a nonlinear function of the rate of deformation,
and the relationship for the power-law fluid is given by
equation (4) in the next section.

The theoretical problem of external, boundary layer
flow of a non-Newtonian fluid was first investigated by
Schowalter [1], who formulated the boundary layer
equations and established the conditions for the existence
of a similarity solution. Acrivos et al. [2] obtained a
similarity solution for a power-law fluid flowing over a
flat plate at zero degree incidence. Later, generalized stud-
ies on the question of similar solutions for non-
Newtonian fluids and the types of inviscid flow fields
consistent with the concept of similarity were done by
Lee and Ames [3], Berkovskii [4] and Hansen and Na
[5].

All of the above studies were done for the case of
impermeable walls. The experimental results that sig-
nificant drag reduction can be achieved by injecting fluid
into the boundary layer [6] motivated the investigations
of non-Newtonian boundary layer flows with injection at
the surface. The effect of wall mass injection on the flow
of a non-Newtonian power-law fluid over a flat plate was
first investigated by Thompson and Snyder [7, 8]. The
solutions for stagnation flow and wedge flow were
obtained by Kim and Eraslan [9, 10]. Liu [11] presented
a class of asymptotic suction solutions for the flow of
power-law fluids over a flat plate.

Klemp and Acrivos [12] studied the problem in which
a flat plate moves in the direction opposite to the
mainstream. Hussaini and Lakin [13] showed that a
boundary layer solution to such a problem exists only if
the ratio of the plate velocity to the main stream velocity
is below a critical value. Vajravelu and Mohapatra [14]
extended this analysis to the case where there is mass
injection at the wall and proved that for a given value of
plate velocity there exists a critical value of injection
beyond which the boundary layer approximations are no
longer applicable.

In all of the works on boundary layer suction or injec-
tion mentioned so far, the major emphasis has been to
obtain a similarity solution. The similarity solution, how-
ever, exists for only one particular fluid injection dis-
tribution. The current work presents a method for obtain-
ing the general boundary layer solution for any fluid
injection/suction profile along the moving flat plate, and
contains the similarity solution as a special case.

2. Formulation of governing equations

Consider an incompressible, power-law fluid flowing
over a porous flat plate in a stationary coordinate system,
as shown in Fig. 1. The velocity and the temperature of
the uniform main stream are U, and T, respectively.
The plate is moving in the negative x-direction into a slot
at the origin with a velocity U,. At the surface of the
plate, which is maintained at a uniform temperature 7,
the same fluid is being injected/sucked with a velocity
V,(x). It is assumed that all physical properties of the
fluid are constant and that the magnitude of the injection
velocity is not large enough to significantly alter the invis-
cid flow field outside the boundary layer. With these
assumptions, the steady state boundary layer equations
for a flat plate are:

0 0
Continuity Tu + ?U =0. (1)
ox 0y
0 0 10
Momentum ul +U? =——=(1,,) 2)
ox dy paoy’
with the boundary conditions:
u=—U, v="V,() aty=0 (3a,b)
u=U, aty=o0. (3c)
For power-law fluids the shear stress is given by
ou|"""' du
=y |—| = 4
T)x Ho ay ay ( )

where y, and n are called the consistency index and the
power-law exponent, respectively. In equation (4), the
quantity g, is not the viscosity in a classical sense unless
n is unity. The parameter n is an important index to
subdivide fluids into pseudo-plastic fluids (n < 1) and
dilatant fluids (z > 1). Pseudo-plastic fluids are more fre-
quently encountered in the physical world than dilatant
fluids. Since the velocity in the x-direction is continuously
increasing along the y-direction, du/dy is always positive

Momentum boundary layer U
U
— Thermal boundary layer
Too ——»
Tw Uw
-

Vw (x)

Fig. 1. Schematic representation of momentum and thermal
boundary layers.
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and one can remove the absolute value sign in equation
(4).

Thermal energy equation uiT +vﬂ = aaz—T %)

ox oy 02

with the boundary conditions:

T=T, aty=0 (6a)
T'=T, aty= 0. (6b)
Since the momentum and the energy equations are not

coupled, the solution to the momentum equation can be
discussed first.

3. Solution of the momentum equation

A stream function is introduced to satisfy the con-
tinuity equation and to make the right-hand-side of the
boundary condition (3b) a constant:

Clay 1oy
U=y U +V,(x). (7a,b)

T Lox

Also, the following dimensionless variables are intro-
duced:

<=%G>n=WHMHW”@> (8a.b)
where
U27nLn
Re = pPY- & )
Ho

is the generalized Reynolds number. The stream function
is also non-dimensionalised by defining

Y= [(n+D)EV VUL f(E ). (10)
In terms of the new variables, the fluid velocity com-
ponents are

v=v. 2 (11)

an
v=—nU, Re™ ' [(1+ 1)/t D {f‘+§(n+l)%

of
*n%}Jr Ve (12
where
Re L
wo:m<né) (13)
The momentum equation (2) is transformed to

o)
a.m

where the primes indicate partial differentiation with
respect to n and

D (=) = (4 1) o

ofnh o
(Y)Y
is the Jacobian.

The parameter A in equation (14) contains the injec-
tion velocity and is given by
A ReV©

p, Uiy[(""'l)é]"“”ﬂ)' (16)

)
0¢

. (15)

The parameter A, which will be called the ‘injection par-
ameter’ hereafter, is a function of ¢ (i.e., x) only and its
form depends on the injection distribution V(&). Note
that if V(&) is negative, A will become the suction

parameter.
The boundary conditions (3a,b,c) are transformed to
U, )
f’=7U7=7/L, f=0 atn=0 (17a,b)
/=1 atnp=ow (17¢)

where 4 is called the plate velocity ratio parameter. The
actual form of the transformed boundary condition (17b)
is {f+(n+1)¢(f10¢)} = 0. However, the definition of
the stream function in equations (7a, b) essentially makes
the flat plate a non-penctrable surface for which the
boundary condition f'= 0 at n = 0 is set and Jf/0¢ van-
ishes at the surface.

It is clear that when A is a constant, the right hand side
of equation (14) vanishes and a similarity solution exists.
This is possible only when there is no injection or when
V(E)/U,ocE "+, For any other injection distribution,
a similarity solution does not exist.

Since A and & are functions of x only, there is a one-
to-one correspondence between A and &. This suggests
that a Merk—Chao series in which the solution is
expanded in terms of derivatives of A can be used. The
dimensionless stream function is written as

dA
f(é, 7’],}’1) =.f0(As n, ”)+(”+1)éd75/{1 (Aa ’1,”)
+(n+1)252d2/\f (A, n,n) (18)
déz 2 >N,

dA\?
+(n+1)2& (d—é>f3(A, n,n)+--.

Substituting equation (18) into equation (14) and col-

lecting terms containing similar perturbation quantities,

a set of sequential differential equations is generated.
The first equation representing local similarity is

)T H(fo=N S5 =0 (19)
with the boundary conditions
Jo(A,0,m) =0, f4(A,0,n) = —1 (20a,b)
So(A,00,n) = 1. (20c)

For the perturbation quantities
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(n +1)€ ( Jrl)zé2

and (n+1)? 52<dA>

dé¢’ d¢

the following higher-order equations are obtained:

SO ST+ =D LSO+ o= NS

af's oty
S a1 =L D T
oY= 15 +a=D 5 (1523
+(fo=A) 2 =20+ D) fof 5+ Qn+3) fofa = /oS —f o
(22)
SO+ =D 7))
+(fo—=N)f5=2(n+1) [0/
+@n+3) fifs+ =D 7)1
—D(n—
N Dl
+ M)A =m+ D) = fo(f1
o Ofl Cfo ” %
0 —\ l —\ . laA (23)
with the associated boundary conditions:
fi(A,0,n) =0, fi(A,0,n) =0 (24a,b)
fiA,00,n) =0 fori=1,23. (24¢)

At any given value of A, obtained at any streamwise
location x, the above equations can be solved sequentially
as ordinary differential equations. The f;s are universal
functions to be solved once and for all for specific values
of n, A and A regardless of ¢ or the form of the injection
velocity distribution.

Since analytical solutions could not be found for these
equations, they are solved numerically in this work. Even
though the equations represent two point boundary value
problems as the condition at = co must be satisfied at
a finite value of 5 in practice, the equations are solved as
initial value problems. A third condition at n =0 is
chosen by guessing a value for f7(0) and is iteratively
improved until the condition at # = co is matched with
sufficient accuracy. In every iteration an equation is inte-
grated with the three initial conditions using a fourth-
order Runge—Kutta method with step size control. Since
f’ reaches its value at n = oo asymptotically, the
additional condition, f”(c0) = 0, must also be satisfied.
Accordingly, integration is carried out up to a point
where f”(n) is sufficiently close to zero. Then, using the
Newton—Raphson method the value of the third initial
condition is corrected depending on the value of f7(o0).

A general computer program was developed to solve
all of the equations. While running the program, it was
found that the universal functions converged rapidly.

Therefore, only the first three universal functions are
calculated. Although the velocity profiles can be gen-
erated using the program, the quantity of practical inter-
est is the shear stress or friction coefficient at the wall,
which can be calculated by knowing the values of f7(0).
The quantities f7(0), f7(0) and f%(0) are tabulated for
various values of n, A and A. Seven values of n are selected
for the calculation [15]. They are n = 0.229 (23.3% Illi-
nois yellow clay in water), n = 0.52 (10% napalm in
kerosene), n=0.716 (0.67% CMC in water), n=1
(Newtonian fluid), n = 1.2, 1.5 and 1.8 (ethylene oxide
in sodium chloride solution). Three values, 0, 0.1 and 0.2,
are chosen for 4.

In order to ensure that a flow with suction or injection
at the wall satisfies the boundary layer equations, it is
necessary to limit the velocity V,(x) at the wall to a
magnitude on the order of U,, Re~""*! [16]. Only when
the velocity is of such small magnitude is it possible to
neglect the loss of mass, or ‘sink effect’, on the external
potential flow. In other words, the potential flow may be
assumed to be unaffected by such suction or injection.
Due to this requirement, the realistic values of the injec-
tion parameter, which is given by

Vo) o T (1Y
A= U Re'/¢ )<(n+l) ) <n> (25)

[5s)

are limited within a certain range. For this reason, the
magnitude of A is limited to 2.5 in this study.

The analysis done by Vajravelu and Mohapatra [14]
for the Newtonian case shows that there exists a critical
value of injection at a given value of A, above which
the boundary layer structure collapses and the boundary
layer approximations are no longer valid. The critical
value of injection is a strong function of A. This is also
true for the present analysis. Above a certain value of A,
the f; equations are not solvable. In this study it was
found that this critical value of injection depends not
only on the value of 4 but also on the value of n. At
constant 7, the critical value decreases with 1. At constant
4, the critical value also decreases with » but this depen-
dence is less than in the former case. This critical value is
the maximum value of A for the case of injection up to
which the results are tabulated. Since no such critical
value exists for suction, the results are tabulated up to
the maximum value selected, which is —2.5.

In Tables 1 and 2, the universal wall derivatives are
presented for n = 0.229 and 1.2, respectively. Results for
other values of n and A can be found in [17]. To verify the
numerical solution procedure and the computer program,
some of the present results are compared with those
reported in previous works. For the case of a stationary
plate with no injection, i.e., when A = 0, the £, equation
is the same as the f; equation presented by Kim et al.
[19]. The values of f7(0) for both studies agree well for
all values of n.
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Table 1
Numerical results of /7 (0) for n = 0.229

4 A 0(0) S1(0) S3(0)
0 —2.50  1.24631681 0.09247901 —0.01628465
—1.50  0.57657097 0.05758343  —0.01076963
—0.75  0.30809930 0.03798774  —0.00745771
—0.25  0.19860355 0.02787707  —0.00565525
0.00  0.15855324 0.02364322  —0.00487497
0.50  0.10009347 0.01667117  —0.00354826
1.00  0.06257607 0.01145862  —0.00251328
2.00  0.02416298 0.00507152  —0.00117257
2.50  0.01506083 0.00329449  —0.00077861
0.1 —2.50  1.55682702 0.10845347  —0.01926821
—1.50  0.67680618 0.06310968  —0.01198972
—0.75  0.33469426 0.03833815  —0.00773178
—0.25  0.20085890 0.02589397  —0.00548129
0.00  0.15341734 0.02077488  —0.00453033
0.50  0.08654745 0.01245696  —0.00296559
1.00  0.04602085 0.00614267  —0.00184862
02 =250  1.93904003 0.12081976  —0.02222974
—1.50  0.78007952 0.06180001 —0.01280486
—0.75  0.35155495 0.02890442  —0.00753559
—0.25  0.19011290 0.01020752  —0.00531213
0.00  0.13428205 —0.00007489  —0.00536205
0.30  0.08310751 —0.02055867  —0.01417871
Table 2
Numerical results of f7(0) forn = 1.2
4 A 0(0) S1(0) S5(0)

0 —2.50  2.61499127 0.02354229 —0.00139398
—1.50  1.80412405 0.03938741 —0.00322018

—0.75 1.17434241 0.06072315  —0.00629977

—0.25  0.74765469 0.08233622 —0.00994112

0.00  0.53506307 0.09608013  —0.01249157

0.20  0.36748990 0.10873447 —0.01500696

0.40  0.20486389 0.12319196 —0.01811544

0.50  0.12685385 0.13152161 —0.02004885

0.1 —2.50  2.81817490 0.02282438 —0.00135947
—1.50  1.93416065 0.03810219 —0.00313795

—0.75 1.24282593  0.05845945 —0.00612806

—0.25 0.76801572 0.07844337 —0.00963737

0.00  0.52631749 0.09002073 —0.01205633

0.20  0.32922100 0.09679003 —0.01436231

0.2 —2.50  3.01536929 0.02136170 —0.00130354
—1.50  2.05769371 0.03520271 —0.00299523

—0.75 1.30265479  0.05219952  —0.00578755

—0.25 0.77437284 0.06272605 —0.00893767

0.00  0.49484629 0.04872731 —0.01170724

0.10  0.37480220 0.00499563 —0.01833166

4. Solution of the energy equation

For the heat transfer analysis, the same coordinate
transformations as used for the analysis of the momen-
tum transfer are again used. A dimensionless temperature
0(&, n) is defined in terms of the transformed coordinates
as

§ T—T,
0 n) = T T (26)
The energy equation (5) is then transformed to

0(0
0+ A (=M = A, (1 1) D) @)

a&m
where the primes indicate differentiation with respect to
n and

0.f) a0 of a0 of
o(&m ~acan  anag
is the Jacobian.

The parameter A, is a function of & except whenn = 1,
and is given by

Uyw n—1
el
pa\ L
1—n

[(n41)&) =~ 0+ = Pr [n(n+ D (%)T (29)

where Pr is the generalized Prandtl number defined as

(28)

1 ‘
Pr=_U,LRe"*". (30)

From the expression for A,, one can observe that it will
be on the same order of magnitude as the generalized
Prandtl number. In fact, when n = 1, A, is equal to the
regular Prandtl number, C’pu/k. The value of A, deter-
mines the relative thicknesses of the momentum and ther-
mal boundary layers. When A, is large, the thermal
boundary layer is small compared to the momentum
boundary layer.

Since equation (27) contains two independent par-
ameters, A and A,, the Merk—Chao series is expanded in
these two parameters. The dimensionless temperature 0
is expanded as follows:

0, n,n) = 0(,+(n+1)5%9l +(n+1)§d(;\€l 0,
Jr(nJrl)zéziliZz\o3 +(n+1)2£2d(:;\2104
+(n+1)2& (22)205+(n+1)252 (dé\é‘ )206
+(n+1)252%d£‘ R (31)

When equation (18) and (31) are substituted into (27)
and terms containing similar perturbation quantities are



2842 J.H. Rao et al. | Int. J. Heat Mass Transfer 42 (1999) 2837-2847

collected, the following set of sequential differential equa-
tions is obtained:

0+ A (fo—AN)0; =0 (32)
0T+ A (fo—=MO —A (n+1) [0, + A, (n+2) 1,05

00, Ufo
< fi- 57> (33)

Ay fi"f (34)
05+ A, (fo— )05 —2A, (n+1) £30, + A, (2n+3) /20,

=A(0./5—0u/1) (35)
T4 AL (fo— A0, —2A, (n+ 1) £30,— A f40, = 0.

03 4+A (fo—=M0: = Ay (n+1) 150, =

(36)
The associated boundary conditions are
0,(0) =0, 64(c0) =1 (37a,b)
0;(00=0, 0,(0)=0 fori=1,2,3,4,---. (38a,b)

It should be noted that when n = 1, A, is a constant and
the higher order universal functions 0,, 0,, 0, 0, . . . , have
no relevance. Similarly when there is no injection or when
A is not a function of ¢, the quantities 6,, 05, 0,
0,, ..., have no relevance.

All of the above equations are linear second-order
ordinary differential equations which can be solved
sequentially for the universal functions 0;s. As is done for
the f; equations, these are solved as initial value problems
using a fourth-order Runge-Kutta method for inte-
gration and the Newton—Raphson method for improving
the unknown initial condition. The quantity of interest is
the heat flux at the surface, which can be obtained from
the values of 67(0). In this case, the universal functions
depend on n, 4, A and A,. Three values, 0.52, 1, and 1.2
are selected for n. The values of 4 and A are chosen as
before. For a given fluid, the parameter A, depends on
the Prandtl number and the location along the surface.
To obtain meaningful values for A, two values, 0.7 and
7, are chosen for Pr, one representing gases and the other
representing liquids. Three values, 0.1, 0.5 and 1, are
chosen for x/L except for Newtonian fluids in which case
the parameter A, is equal to the Prandtl number and has
no x/L dependency.

In Table 3 the numerical results of 6;(0) are presented
forn = 0.52 and A, = 1.633. In Table 4, these results are
given for n = 1.2 and A, = 0.819. The results for more
extensive values of n and A, are given in [17].

5. Significant momentum and heat transfer quantities

Once the universal velocity and temperature functions
are calculated, quantities such as the local friction
coefficient and the Nusselt number can readily be calcu-
lated. The only other information needed is the injection
distribution at the plate surface.

The shear stress exerted by the fluid on the plate is
given by

AN
Ty = Tyx'y:() = Ko aiy
y=0

Defining the local friction coefficient as ¢; = (t,,/pU2/2)
and writing it in a form analogous to that for a New-
tonian fluid gives

—1
1 17
chRe“("“) = |:n(n+1) x:| o { 5(0)

(39)

+(n+1)é f(0)+( +1)2£2 (0)+~~-}”. (40)

d¢
The heat flux at the wall is given by
oT
dy

qn = —k (41)

y=0
The Nusselt number is expressed as
Nu Ret= D+

- %Re(—l)ﬁom) - L@

- |:n(n+1) x}”" {9’ 0)

+(n+1)5—ée’

Re(—D/n+1)

y=0

é

+(@n+1)? 62 3(0)

52

+(n+1)%¢? dA 0,(0)+ - } (42)

6. Application

In this section it is demonstrated how the general solu-
tions can be applied for a special case. The simplest case
for this problem is when the injection velocity takes the
form V(&)/U,, = K&+l where K is a constant. In
this case, the injection parameter A becomes constant
and the similarity solution applies for the velocity field,
i.e., only the first term in equation (18) is required.
However, no similarity solution exists for the temperature
field even in this case. The similarity solution has been
studied for the velocity field by Vajravelu and Mohapatra
[14] for a Newtonian fluid and by Akcay and Yukselen
[18] for a non-Newtonian fluid. The most common and
easiest laboratory simulation is for a constant injection
along the length of the plate. For this case, the similarity
solution cannot be applied to either the velocity or the
temperature field. For this case



Table 3

J.H. Rao et al. | Int. J. Heat Mass Transfer 42 (1999) 2837-2847

Numerical results of 6;(0) for n = 0.520 and A, = 1.633 (A, corresponding to Pr = 7 and x/L = 0.1)

2843

A A 0,(0) 07(0) x 10 05(0) x 10 05(0) x 10? 605(0) x 10?
0 —2.50 4.196733 0.288444 —0.813837 —0.096000 0.553219
—1.50 2.606704 0.567390 —0.874152 —0.413789 0.909087
—0.75 1.460555 1.035030 —0.791905 —1.237035 1.169097
—0.25 0.767777 1.472697 —0.537995 —2.324261 1.020001
0.00 0.472629 1.591172 —0.326373 —2.820403 0.718527
0.50 0.086387 0.944832 0.027195 —1.967108 0.006055
1.00 0.001676 0.051903 0.007326 —0.113209 —0.011877
0.1 —2.50 4.176176 0.214521 —0.762132 —0.051735 0.519820
—1.50 2.572396 0.428191 —0.804618 —0.292827 0.844217
—0.75 1.404828 0.818208 —0.713590 —0.995903 1.072692
—0.25 0.690127 1.218885 —0.454049 —2.027693 0.885980
0.00 0.386587 1.309695 —0.239219 —2.482515 0.549682
0.50 0.032523 0.423613 0.026681 —1.009904 —0.035763
0.75 0.001400 0.020844 0.003201 —0.103072 —0.006640
0.2 —2.50 4.155839 0.135010 —0.710982 —0.013179 0.488983
—1.50 4.108080 0.130026 —0.382348 —0.021037 0.308521
—0.75 1.344342 0.487421 —0.625440 —0.758872 0.973874
—0.25 0.598383 0.640949 —0.355404 —1.783894 0.732799
0.00 0.280330 0.413156 —0.142389 —2.480133 0.345601
0.20 0.093002 —0.377028 —0.018228 —4.353858 0.035946
Table 4
Numerical results of 0(0) for n = 1.2 and A, = 0.819 (A, corresponding to Pr = 0.7 and x/L = 0.5)
A A 0,(0) 07(0) x 10 05(0) x 10 05(0) x 10? 05(0) x 10?
0 —2.50 2.226195 0.334889 —1.613782 —0.277005 1.502401
—1.50 1.474776 0.460740 —1.485074 —0.464985 1.746394
—0.75 0.942275 0.573140 —1.152190 —0.660677 1.609376
—0.25 0.611181 0.652501 —0.777634 —0.816715 1.227319
0.00 0.455098 0.696898 —0.548824 —0.909867 0.933055
0.10 0.394600 0.717902 —0.452203 —0.954237 0.797694
0.30 0.276661 0.776555 —0.256608 —1.074618 0.504186
0.50 0.160405 0.921628 —0.071684 —1.347679 0.198231
0.1 —2.50 2.210826 0.307589 —1.568367 —0.257332 1.467759
—1.50 1.454309 0.420922 —1.437498 —0.429557 1.701817
—0.75 0.915257 0.515943 —1.097334 —0.601154 1.545541
—0.25 0.576407 0.571870 —0.711231 —0.725968 1.135841
0.00 0.413598 0.590624 —0.472391 —0.789931 0.817188
0.10 0.349076 0.592573 —0.370664 —0.817161 0.668926
0.30 0.216417 0.513436 —0.161181 —0.897591 0.337626
0.2 —2.50 2.195121 0.277952 —1.521474 —0.238193 1.432944
—1.50 1.433170 0.374623 —1.387694 —0.393762 1.655927
—0.75 0.886670 0.439919 —1.039636 —0.537841 1.479560
0.00 0.364072 0.275282 —0.384704 —0.684981 0.681166
0.10 0.290915 —0.033499 —0.273163 —1.047211 0.508937
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V(%) = vg (43)
Re v, .

A==l g, (44)
n U,

The parameter A, is independent of the injection dis-
tribution

o (U o
A, =n2 (2= 1) E] A =mict+m 4
1 npa<L> [+ 1)2] (43

and the coefficients of the universal functions in the
Merk—Chao series are

(n—b—l)é% =nA (46)

(n+1)2g“2dz£/2\ = —nA 47)

(n+1)€d(;\g —(1-mA, (48)

and

(n+1)252%: —2n(1=n)A,. 49)
dé?

The dimensionless axial velocity profile is
J'=fotnAy—nAfo+ . (50)
One can find the local friction coefficient by knowing the
values of f7(0):

—1

1 ) X |1,
SerRe ) = [n(n+1)ﬂ R0

+nAf1(0) —nAf50)+ -} (51)

There is an order of magnitude reduction between the
successive f; values. As the values of A are limited within
a certain range, the magnitude of the coefficients is not
large enough to alter this reduction significantly. Hence
the series converges rapidly and the first three terms give
an accurate solution.

The dimensionless temperature is

0 = 0, +nA0, +(1—n)A, 0, —nA0,
—2n(1—m)A,0,+ -~ (52)

and the Nusselt number can be calculated by knowing
the values of 0;(0):

1
Nu Re! =D+ = [n(n—i— 1) %}] +”{0{) 0)

+nA07(0) + (1—n)A,05(0) (53)
—nA05(0) —2n(1 —n)0,(0)+ - - - }

In this case, the successive odd numbered and even num-
bered terms decrease at a much faster rate than the terms

in the momentum solution. In Table 5, the quantities
3¢ Re' ™D and NuRe~V/* 1 are given for few cases
when there is constant injection/suction.

The convergence of equations (51) and (53) is very
good for the parameter range studied. For example, for
n=0.229, 1 = 0,and A = 0.75, the magnitude of the first
term in equation (51) is 96.4% of the value of the whole
series. A more detailed study of the convergence of these
series is available in [17].

The dimensionless velocity and temperature profiles
given by equations (50) and (52), respectively, can be
used to observe the effect of various parameters on the
behavior of the boundary layer. The thickness of the
momentum boundary layer for fixed A and A is largely
determined by the power-law constant n, which deter-
mines by equation (4) how fast viscous momentum is
transferred through the fluid layers in the boundary layer.
The momentum boundary layer thickness decreases sig-
nificantly with increasing n, and, conversely, the velocity
gradient at the wall increases as can be seen from the
values in Tables 1 and 2. The value of n also influences
the thermal boundary layer thickness in the same manner,
but to a lesser extent. The thermal boundary layer thick-
ness primarily depends on the magnitude of the par-
ameter A,, which contains the Prandtl number. If A, is
large, the thermal boundary layer thickness is going to
be small and the temperature gradient at the wall is large.
At constant A, or Pr values, this thickness decreases with
n. These effects have been mentioned by Kim et al. [19]
and more detail is given in [17].

Injecting fluid into the boundary layer increases both
the momentum and thermal boundary layer thicknesses
as shown in Figs 2 and 3, respectively. As a consequence
of this, the velocity and temperature gradients at the
surface decrease, resulting in lower friction coefficients
and Nusselt numbers at the wall, as listed in Table 5. As
is also shown in these figures and table, suction has
exactly the opposite effect. Increasing the suction
increases the velocity and temperature gradients at the
wall by decreasing the momentum and thermal boundary
layer thicknesses. This is true for all values of n and 4
studied in [17].

The effect of the plate velocity ratio parameter, 4, is
somewhat different. When there is injection, increasing 4
at a constant value of A increases the momentum bound-
ary layer thickness, which decreases the wall velocity
gradient and results in a lower friction coefficient. This is
also true when A = 0. When there is suction, increasing
4 at a constant value of A has the opposite effect. Thus,
when the plate is moved with a greater speed opposite to
the mainstream, the effects of suction and injection are
enhanced. At a given n and 4, the decrease/increase in
wall shear stress with respect to A for the case of injec-
tion/suction is almost constant over the entire range of
A values presented [17]. This decrease/increase is larger
at higher values of 4.
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Table 5
Numerical results of 3¢; Re'*+" and Nu Re="/“*" for the case of constant injection/suction
n A A x/L %Cr Re!/+D A Nu Re— D/t
0.52 —0.5 0.966 0.832305 0.338 0.444059
0 0 0.966 0.618177 0.338 0.304191
0.5 0.966 0.428789 0.338 0.184882
—0.5 0.966 0.858622 0.338 0.423571
0.1 0 0.966 0.610068 0.338 0.272947
0.5 0.966 0.381134 0.338 0.136256
1 —0.5 0.707 0.721419 0.7 0.553798
0 0 0.707 0.394885 0.7 0.348057
0.5 0.707 0.124853 0.7 0.174672
—-0.5 0.707 0.759257 0.7 0.533142
0.1 0 0.707 0.387694 0.7 0.315028
0.4 0.791 0.114731 0.7 0.131875
1.2 —-0.5 0.634 0.754565 0.948 0.651438
0 0 0.634 0.373579 0.948 0.483491
0.5 0.634 0.066414 0.948 0.176285
—0.5 0.634 0.797659 0.948 0.627534
0.1 0 0.634 0.366264 0.948 0.351970
0.3 0.838 0.117562 0.948 0.168801
1.00
n=0.716
A=0.1
0.75
0.50
')
025
0.00
0.0 25 5.0 7.5 10.0 125

n

Fig. 2. Effect of injection/suction on dimensionless velocity profiles for n = 0.716 and 1 = 0.1.
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1.00
n=052
A,=0338
A=0

0.75

6m)
0.50 - / // // // A=-025
A=-05
0.25
0.00 1 L L L
0 2 4 6 8 10 12

Fig. 3. Effect of injection/suction on dimensionless temperature profiles for n = 0.52, 2 = 0 and A, = 0.338.

It is interesting to note that the effect of the plate
velocity parameter 4 on the heat transfer is different from
its effect on the momentum transfer. Increasing 4 at a
constant value of A decreases the temperature gradient
and the Nusselt number at the surface in both cases of
suction and injection. Figure 4 shows this effect of plate
velocity on the dimensionless temperature profiles when
injection is present. For the case of constant suction, a
similar trend of the temperature profile is observed [17].
Table 5 shows the same behavior for the Nusselt number.

The critical value of A, which is the maximum value of

the injection parameter, is also a strong function of the
power-law constant n, and the plate velocity ratio, 4. At
constant n, the critical value decreases with 4. At constant
A, the critical value decreases with n but this dependence
is less than that in the former case [17].

7. Conclusions

The momentum and heat transfer in the laminar non-
Newtonian boundary layer of a moving flat plate with

1.00
n=052
A=025
A, =3379

0.75 +

Q)

0.50 |

0.25

0.00 ! !

0 2 6 8

Fig. 4. Effect of plate velocity on dimensionless temperature profiles for n = 0.52 and A, = 3.379 with injection present.
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arbitrary injection/suction at the surface have been ana-
lyzed. The main objective of this study, that of obtaining
boundary layer solutions for any form of the fluid injec-
tion/suction distribution along the surface, is achieved by
absorbing the injection/suction velocity into the gov-
erning equations. Then, by using the Merk—Chao series
expansion, those equations are decomposed into an infi-
nite sequence of ordinary differential equations. The solu-
tions to these equations are expressible in terms of uni-
versal functions, which are independent of the
injection/suction velocity distribution at the surface. This
is a significant improvement over the previous similarity
solutions, which are applicable only for a particular form
of the injection distribution.

The present method of obtaining the solution for a
particular injection/suction profile is illustrated for the
case of constant velocity at the plate surface. For this
case, the convergence of the Merk—Chao series is excel-
lent. The effects of the injection parameter and the plate
velocity ratio on the velocity and temperature profiles
and on the friction coefficient and Nusselt number at the
wall are discussed. Increasing the value of the injection
parameter reduces the velocity and the temperature
gradients at the wall and decreases the friction coefficient
and the Nusselt number significantly. Suction has exactly
the opposite effects. Increasing the plate velocity ratio
decreases the friction coefficient and the Nusselt number
at the wall when injection is present. With suction present,
increasing the plate velocity ratio increases the friction
coefficient but decreases the Nusselt number.

The requirement that the injection velocity be small
compared to the mainstream velocity in order to validate
the boundary layer assumptions limits the use of the
present solution procedure to such cases where the injec-
tion parameter is below a certain critical value. The criti-
cal values found with the present numerical procedure
are in close agreement with those reported in previous
works. This critical value decreases as the power-law
constant increases. Also, at a given value of the power-
law constant, the critical value decreases drastically with
the plate velocity ratio.
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