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Abstract

The momentum and heat transfer in the laminar boundary layer of a non!Newtonian power!law ~uid ~owing over a
~at plate\ which is moving in the direction opposite to the uniform main stream\ and with arbitrary ~uid injection:suction
along the plate surface\ are analyzed[ The partial di}erential equations are decomposed into a sequence of ordinary
di}erential equations using the MerkÐChao series to obtain universal velocity and temperature functions that are
independent of the ~uid injection:suction distribution pro_le[ Results are tabulated as a function of the problem
parameters[ Friction coe.cients and Nusselt numbers are calculated for constant ~uid injection:suction along the plate[
Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

cf friction coe.cient de_ned by equation "39#
C¼ p speci_c heat at constant pressure
f dimensionless stream function de_ned in equation
"09#
k thermal conductivity
L reference length
n power!law exponent de_ned in equation "3#
Nu Nusselt number de_ned in equation "31#
Pr generalized Prandtl number de_ned in equation "29#
Re generalized Reynolds number de_ned in equation
"8#
T temperature
u ~uid velocity component in x!direction
Uw plate velocity in the negative x!direction
U� main stream velocity
v ~uid velocity component in y!direction
v9 constant injection velocity at the wall
Vw"x# injection velocity at the plate surface
V"j# dimensionless injection distribution de_ned in
equation "02#

� Corresponding author[ Tel[] 990 308 429 7112^ fax] 990 308
429 7195^ e!mail] djengÝuofto1[utoledo[edu

x stream wise coordinate along surface measured from
the slot
y coordinate normal to plate surface[

Greek symbols
a thermal di}usivity
h dimensionless variable de_ned in equation "7b#
u dimensionless temperature de_ned in equation "15#
l plate velocity ratio de_ned in equation "06a#
L injection parameter de_ned by equation "05#
L0 parameter in the energy equation de_ned by equa!
tion "18#
m9 consistency index for non!Newtonian viscosity
de_ned in equation "3#
j dimensionless variable de_ned in equation "7a#
r density
tyx shear stress de_ned in equation "3#
c stream function de_ned in equations "6a\b#[

Subscripts
i subscript designating universal functions
w subscript designating the conditions at the plate sur!
face
� subscript designating the conditions in the main
stream[
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0[ Introduction

A majority of non!Newtonian ~uids fall into the time!
independent classi_cation\ which includes power!law ~u!
ids[ Power!law ~uids\ which have been called Ostwald!de!
Waele ~uids by some authors\ have been well examined
because the constitutive equation for such a ~uid not
only gives a good expression for a large portion of non!
Newtonian ~uids but also encompasses a Newtonian
~uid as well[ For a non!Newtonian ~uid\ the viscous
stress is a nonlinear function of the rate of deformation\
and the relationship for the power!law ~uid is given by
equation "3# in the next section[

The theoretical problem of external\ boundary layer
~ow of a non!Newtonian ~uid was _rst investigated by
Schowalter ð0Ł\ who formulated the boundary layer
equations and established the conditions for the existence
of a similarity solution[ Acrivos et al[ ð1Ł obtained a
similarity solution for a power!law ~uid ~owing over a
~at plate at zero degree incidence[ Later\ generalized stud!
ies on the question of similar solutions for non!
Newtonian ~uids and the types of inviscid ~ow _elds
consistent with the concept of similarity were done by
Lee and Ames ð2Ł\ Berkovskii ð3Ł and Hansen and Na
ð4Ł[

All of the above studies were done for the case of
impermeable walls[ The experimental results that sig!
ni_cant drag reduction can be achieved by injecting ~uid
into the boundary layer ð5Ł motivated the investigations
of non!Newtonian boundary layer ~ows with injection at
the surface[ The e}ect of wall mass injection on the ~ow
of a non!Newtonian power!law ~uid over a ~at plate was
_rst investigated by Thompson and Snyder ð6\ 7Ł[ The
solutions for stagnation ~ow and wedge ~ow were
obtained by Kim and Eraslan ð8\ 09Ł[ Liu ð00Ł presented
a class of asymptotic suction solutions for the ~ow of
power!law ~uids over a ~at plate[

Klemp and Acrivos ð01Ł studied the problem in which
a ~at plate moves in the direction opposite to the
mainstream[ Hussaini and Lakin ð02Ł showed that a
boundary layer solution to such a problem exists only if
the ratio of the plate velocity to the main stream velocity
is below a critical value[ Vajravelu and Mohapatra ð03Ł
extended this analysis to the case where there is mass
injection at the wall and proved that for a given value of
plate velocity there exists a critical value of injection
beyond which the boundary layer approximations are no
longer applicable[

In all of the works on boundary layer suction or injec!
tion mentioned so far\ the major emphasis has been to
obtain a similarity solution[ The similarity solution\ how!
ever\ exists for only one particular ~uid injection dis!
tribution[ The current work presents a method for obtain!
ing the general boundary layer solution for any ~uid
injection:suction pro_le along the moving ~at plate\ and
contains the similarity solution as a special case[

1[ Formulation of governing equations

Consider an incompressible\ power!law ~uid ~owing
over a porous ~at plate in a stationary coordinate system\
as shown in Fig[ 0[ The velocity and the temperature of
the uniform main stream are U� and T�\ respectively[
The plate is moving in the negative x!direction into a slot
at the origin with a velocity Uw[ At the surface of the
plate\ which is maintained at a uniform temperature Tw\
the same ~uid is being injected:sucked with a velocity
Vw"x#[ It is assumed that all physical properties of the
~uid are constant and that the magnitude of the injection
velocity is not large enough to signi_cantly alter the invis!
cid ~ow _eld outside the boundary layer[ With these
assumptions\ the steady state boundary layer equations
for a ~at plate are]

Continuity
1u
1x

¦
1v
1y

� 9[ "0#

Momentum u
1u
1x

¦v
1u
1y

�
0
r

1

1y
"tyx# "1#

with the boundary conditions]

u � −Uw\ v � Vw"x# at y � 9 "2a\b#

u � U� at y ��[ "2c#

For power!law ~uids the shear stress is given by

tyx � m9 b
1u
1y b

n−0 1u
1y

"3#

where m9 and n are called the consistency index and the
power!law exponent\ respectively[ In equation "3#\ the
quantity m9 is not the viscosity in a classical sense unless
n is unity[ The parameter n is an important index to
subdivide ~uids into pseudo!plastic ~uids "n ³ 0# and
dilatant ~uids "n × 0#[ Pseudo!plastic ~uids are more fre!
quently encountered in the physical world than dilatant
~uids[ Since the velocity in the x!direction is continuously
increasing along the y!direction\ 1u:1y is always positive

Fig[ 0[ Schematic representation of momentum and thermal
boundary layers[
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and one can remove the absolute value sign in equation
"3#[

Thermal energy equation u
1T
1x

¦v
1T
1y

� a
11T

1y1
"4#

with the boundary conditions]

T � Tw at y � 9 "5a#

T � T� at y ��[ "5b#

Since the momentum and the energy equations are not
coupled\ the solution to the momentum equation can be
discussed _rst[

2[ Solution of the momentum equation

A stream function is introduced to satisfy the con!
tinuity equation and to make the right!hand!side of the
boundary condition "2b# a constant]

u �
0
L

1c

1y
\ v � −

0
L

1c

1x
¦Vw"x#[ "6a\b#

Also\ the following dimensionless variables are intro!
duced]

j �
n
Re 0

x
L1\ h � ð"n¦0#jŁ "−0#:"n¦0# 0

y
L1 "7a\b#

where

Re �
rU1−n

� Ln

m9

"8#

is the generalized Reynolds number[ The stream function
is also non!dimensionalised by de_ning

c � ð"n¦0#jŁ0:"n¦0#U�L1f"j\ h#[ "09#

In terms of the new variables\ the ~uid velocity com!
ponents are

u � U�

1f
1h

"00#

v � −nU� Re−0 ð"0¦0#jŁ "−n#:"n¦0# 6f¦j"n¦0#
1f
1j

−h
1f
1h7¦V"j# "01#

where

V"j# � Vw 0
Re L

n
j1[ "02#

The momentum equation "1# is transformed to

f 1f ý"n−0#¦" f−L# f ý �"n¦0#j
1" f ?\ f #
1"j\ h#

"03#

where the primes indicate partial di}erentiation with
respect to h and

1" f ?\ f #
1"j\ h#

�
1f ?
1j

f ?−f ý
1f
1j

"04#

is the Jacobian[
The parameter L in equation "03# contains the injec!

tion velocity and is given by

L �
Re
n

V"j#
U�

ð"n¦0#jŁn:"n¦0#[ "05#

The parameter L\ which will be called the {injection par!
ameter| hereafter\ is a function of j "i[e[\ x# only and its
form depends on the injection distribution V"j#[ Note
that if V"j# is negative\ L will become the suction
parameter[

The boundary conditions "2a\b\c# are transformed to

f ? � −
Uw

U�

� −l\ f � 9 at h � 9 "06a\b#

f ? � 0 at h � � "06c#

where l is called the plate velocity ratio parameter[ The
actual form of the transformed boundary condition "06b#
is "f¦"n¦0#j"1f:1j## � 9[ However\ the de_nition of
the stream function in equations "6a\ b# essentially makes
the ~at plate a non!penetrable surface for which the
boundary condition f � 9 at h � 9 is set and 1f:1j van!
ishes at the surface[

It is clear that when L is a constant\ the right hand side
of equation "03# vanishes and a similarity solution exists[
This is possible only when there is no injection or when
V"j#:U��j−n:n¦0[ For any other injection distribution\
a similarity solution does not exist[

Since L and j are functions of x only\ there is a one!
to!one correspondence between L and j[ This suggests
that a MerkÐChao series in which the solution is
expanded in terms of derivatives of L can be used[ The
dimensionless stream function is written as

f"j\ h\ n# � f9"L\ h\ n#¦"n¦0#j
dL
dj

f0"L\ h\ n#

¦"n¦0#1j1 d1L
dj1

f1"L\ h\ n# "07#

¦"n¦0#1j1 0
dL
dj1

1

f2"L\ h\ n#¦= = = [

Substituting equation "07# into equation "03# and col!
lecting terms containing similar perturbation quantities\
a set of sequential di}erential equations is generated[

The _rst equation representing local similarity is

f 91 " f ý9#n−0¦" f9−L# f ý9 � 9 "08#

with the boundary conditions

f9"L\ 9\ n# � 9\ f ?9"L\ 9\ n# � −l "19a\b#

f ?9"L\ �\ n# � 0[ "19c#

For the perturbation quantities
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"n¦0#j
dL
dj

\"n¦0#1j1 d1L
dj1

and "n¦0#1j10
dL
dj1

1

the following higher!order equations are obtained]

" f ý9#n−0f 01¦"n−0# f 91" f 91#n−1f ý0¦" f9−L# f ý0

−"n¦0# f ?9f ?0¦"n¦1# f ý9f0 � f ?9
1f ?9
1L

−f ý9
1f9
1L

"10#

" f ý9#n−0f 11¦"n−0# f 11 " f ý9#n−1f ý1
¦" f9−L# f ý1−1"n¦0# f ?9f ?1¦"1n¦2# f ý9f1 �f ?9f ?0−f ý9f0

"11#

" f ý9#n−0f 21¦"n−0# f 91" f ý9#n−1f ý2

¦" f9−L# f ý2−1"n¦0# f ?9f ?2

¦"1n¦2# f ý9f2¦"n−0# f 01 " f ý9#n−1f ý0

¦
"n−0#"n−1#

1
f 91 " f ?9#n−2" f ý0#1

¦"n¦1# f0f ý0−"n¦0#" f ?0#1 � f ?9
1f ?0
1L

−f ý9
1f0
1L

¦f ?0
1f ?9
1L

−f ý0
1f9
1L "12#

with the associated boundary conditions]

fi"L\ 9\ n# � 9\ f ?i"L\ 9\ n# � 9 "13a\b#

f ?i"L\ �\ n# � 9 for i � 0\ 1\ 2[ "13c#

At any given value of L\ obtained at any streamwise
location x\ the above equations can be solved sequentially
as ordinary di}erential equations[ The fis are universal
functions to be solved once and for all for speci_c values
of n\ l and L regardless of j or the form of the injection
velocity distribution[

Since analytical solutions could not be found for these
equations\ they are solved numerically in this work[ Even
though the equations represent two point boundary value
problems as the condition at h � � must be satis_ed at
a _nite value of h in practice\ the equations are solved as
initial value problems[ A third condition at h � 9 is
chosen by guessing a value for f ýi"9# and is iteratively
improved until the condition at h � � is matched with
su.cient accuracy[ In every iteration an equation is inte!
grated with the three initial conditions using a fourth!
order RungeÐKutta method with step size control[ Since
f ? reaches its value at h � � asymptotically\ the
additional condition\ f ý"�# � 9\ must also be satis_ed[
Accordingly\ integration is carried out up to a point
where f ý"h# is su.ciently close to zero[ Then\ using the
NewtonÐRaphson method the value of the third initial
condition is corrected depending on the value of f ?i"�#[

A general computer program was developed to solve
all of the equations[ While running the program\ it was
found that the universal functions converged rapidly[

Therefore\ only the _rst three universal functions are
calculated[ Although the velocity pro_les can be gen!
erated using the program\ the quantity of practical inter!
est is the shear stress or friction coe.cient at the wall\
which can be calculated by knowing the values of f ýi"9#[
The quantities f ý9"9#\ f ý0"9# and f ý1"9# are tabulated for
various values of n\ l and L[ Seven values of n are selected
for the calculation ð04Ł[ They are n � 9[118 "12[2) Illi!
nois yellow clay in water#\ n � 9[41 "09) napalm in
kerosene#\ n � 9[605 "9[56) CMC in water#\ n � 0
"Newtonian ~uid#\ n � 0[1\ 0[4 and 0[7 "ethylene oxide
in sodium chloride solution#[ Three values\ 9\ 9[0 and 9[1\
are chosen for l[

In order to ensure that a ~ow with suction or injection
at the wall satis_es the boundary layer equations\ it is
necessary to limit the velocity Vw"x# at the wall to a
magnitude on the order of U� Re−0:n¦0 ð05Ł[ Only when
the velocity is of such small magnitude is it possible to
neglect the loss of mass\ or {sink e}ect|\ on the external
potential ~ow[ In other words\ the potential ~ow may be
assumed to be una}ected by such suction or injection[
Due to this requirement\ the realistic values of the injec!
tion parameter\ which is given by

L �
Vw"x#
U�

Re0:"n¦0# 0"n¦0#
x
L1

n
n¦0

0
0
n1

0
n¦0

"14#

are limited within a certain range[ For this reason\ the
magnitude of L is limited to 1[4 in this study[

The analysis done by Vajravelu and Mohapatra ð03Ł
for the Newtonian case shows that there exists a critical
value of injection at a given value of l\ above which
the boundary layer structure collapses and the boundary
layer approximations are no longer valid[ The critical
value of injection is a strong function of l[ This is also
true for the present analysis[ Above a certain value of L\
the fi equations are not solvable[ In this study it was
found that this critical value of injection depends not
only on the value of l but also on the value of n[ At
constant n\ the critical value decreases with l[ At constant
l\ the critical value also decreases with n but this depen!
dence is less than in the former case[ This critical value is
the maximum value of L for the case of injection up to
which the results are tabulated[ Since no such critical
value exists for suction\ the results are tabulated up to
the maximum value selected\ which is −1[4[

In Tables 0 and 1\ the universal wall derivatives are
presented for n � 9[118 and 0[1\ respectively[ Results for
other values of n and L can be found in ð06Ł[ To verify the
numerical solution procedure and the computer program\
some of the present results are compared with those
reported in previous works[ For the case of a stationary
plate with no injection\ i[e[\ when L � 9\ the f9 equation
is the same as the f9 equation presented by Kim et al[
ð08Ł[ The values of f ý9"9# for both studies agree well for
all values of n[
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Table 0
Numerical results of f ý9"9# for n � 9[118

l L f ý9"9# f ý0"9# f ý1"9#

9 −1[49 0[13520570 9[98136890 −9[90517354
−0[49 9[46546986 9[94647232 −9[90965852
−9[64 9[29798829 9[92687663 −9[99634660
−9[14 9[08759244 9[91676696 −9[99454414

9[99 9[04744213 9[91253211 −9[99376386
9[49 9[09998236 9[90556006 −9[99243715
0[99 9[95146596 9[90034751 −9[99140217
1[99 9[91305187 9[99496041 −9[99006146
1[49 9[90495972 9[99218338 −9[99966750

9[0 −1[49 0[44571691 9[09734236 −9[90815710
−0[49 9[56579507 9[95209857 −9[90087861
−9[64 9[22358315 9[92722704 −9[99662067
−9[14 9[19974789 9[91478286 −9[99437018

9[99 9[04230623 9[91966377 −9[99342922
9[49 9[97543634 9[90134585 −9[99185448
0[99 9[93591974 9[99503156 −9[99073751

9[1 −1[49 0[82893992 9[01970865 −9[91111863
−0[49 9[67996841 9[95079990 −9[90179375
−9[64 9[24044384 9[91789331 −9[99642448
−9[14 9[08900189 9[90919641 −9[99420102

9[99 9[02317194 −9[99996378 −9[99425194
9[29 9[97209640 −9[91944756 −9[90306760

Table 1
Numerical results of f ýi"9# for n � 0[1

l L f ý9"9# f ý0"9# f ý1"9#

9 −1[49 1[50388016 9[91243118 −9[99028287
−0[49 0[79301394 9[92827630 −9[99211907
−9[64 0[06323130 9[95961204 −9[99518866
−9[14 9[63654358 9[97122511 −9[99883001

9[99 9[42495296 9[98597902 −9[90138046
9[19 9[25637889 9[09762336 −9[90499585
9[39 9[19375278 9[01208085 −9[90700433
9[49 9[01574274 9[02041050 −9[91993774

9[0 −1[49 1[70706389 9[91171327 −9[99024836
−0[49 0[82305954 9[92709108 −9[99202684
−9[64 0[13171482 9[94734834 −9[99501795
−9[14 9[65790461 9[96733226 −9[99852626

9[99 9[41520638 9[98991962 −9[90194522
9[19 9[21811099 9[98568992 −9[90325120

9[1 −1[49 2[90425818 9[91025069 −9[99029243
−0[49 1[94658260 9[92419160 −9[99188412
−9[64 0[29154368 9[94108841 −9[99467644
−9[14 9[66326173 9[95161594 −9[99782656

9[99 9[38373518 9[93761620 −9[90069613
9[09 9[26379119 9[99388452 −9[90722055

3[ Solution of the energy equation

For the heat transfer analysis\ the same coordinate
transformations as used for the analysis of the momen!
tum transfer are again used[ A dimensionless temperature
u"j\ h# is de_ned in terms of the transformed coordinates
as

u"j\ h# �
T−Tw

T�−Tw

[ "15#

The energy equation "4# is then transformed to

uý¦L0" f−L#u? �L0"n¦0#j
1"u\ f #
1"j\ h#

"16#

where the primes indicate di}erentiation with respect to
h and

1"u\ f #
1"j\ h#

�
1u

1j

1f
1h

−
1u

1h

1f
1j

"17#

is the Jacobian[
The parameter L0 is a function of j except when n � 0\

and is given by

L0 � n
m9

ra 0
U�

L 1
n−0

ð"n¦0#jŁ "0−n#:"0¦n# � n Pr $n"n¦0# 0
x
L1%

0−n
0¦n

"18#

where Pr is the generalized Prandtl number de_ned as

Pr �
0
a

U�L Re1:"n¦0#[ "29#

From the expression for L0\ one can observe that it will
be on the same order of magnitude as the generalized
Prandtl number[ In fact\ when n � 0\ L0 is equal to the
regular Prandtl number\ C¼ pm:k[ The value of L0 deter!
mines the relative thicknesses of the momentum and ther!
mal boundary layers[ When L0 is large\ the thermal
boundary layer is small compared to the momentum
boundary layer[

Since equation "16# contains two independent par!
ameters\ L and L0\ the MerkÐChao series is expanded in
these two parameters[ The dimensionless temperature u

is expanded as follows]

u"j\ h\ n# � u9¦"n¦0#j
dL
dj

u0¦"n¦0#j
dL0

dj
u1

¦"n¦0#1j1 d1L
dj1

u2 ¦"n¦0#1j1 d1L0

dj1
u3

¦"n¦0#1j1 0
dL
dj1

1

u4¦"n¦0#1j1 0
dL0

dj 1
1

u5

¦"n¦0#1j1 dL
dj

dL0

dj
u6¦= = = [ "20#

When equation "07# and "20# are substituted into "16#
and terms containing similar perturbation quantities are
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collected\ the following set of sequential di}erential equa!
tions is obtained]

uý9¦L0" f9−L#u?9 � 9 "21#

uý0¦L0" f9−L#u?0−L0"n¦0# f ?9u0¦L0"n¦1# f0u?9

� L0 0
1u9

1L
f ?0−u?9

1f9
1L1 "22#

uý1¦L0" f9−L#u?1−L0"n¦0# f ?9u1 � L0

1u9

1L0

f ?9 "23#

uý2¦L0" f9−L#u?2−1L0"n¦0# f ?9u2¦L0"1n¦2# f1u?9
� L0"u0f ?9−u?9f0# "24#

uý3¦L0" f9−L#u?3−1L0"n¦0# f ?9u3−L0f ?9u1 � 9[

"25#

The associated boundary conditions are

u9"9# � 9\ u9"�# � 0 "26a\b#

ui"9# � 9\ ui"�# � 9 for i � 0\ 1\ 2\ 3\ = = = [ "27a\b#

It should be noted that when n � 0\ L0 is a constant and
the higher order universal functions u1\ u3\ u5\ u6\ [ [ [ \ have
no relevance[ Similarly when there is no injection or when
L is not a function of j\ the quantities u0\ u2\ u4\
u6\ [ [ [ \ have no relevance[

All of the above equations are linear second!order
ordinary di}erential equations which can be solved
sequentially for the universal functions uis[ As is done for
the fi equations\ these are solved as initial value problems
using a fourth!order RungeÐKutta method for inte!
gration and the NewtonÐRaphson method for improving
the unknown initial condition[ The quantity of interest is
the heat ~ux at the surface\ which can be obtained from
the values of u?i"9#[ In this case\ the universal functions
depend on n\ l\ L and L0[ Three values\ 9[41\ 0\ and 0[1
are selected for n[ The values of l and L are chosen as
before[ For a given ~uid\ the parameter L0 depends on
the Prandtl number and the location along the surface[
To obtain meaningful values for L0\ two values\ 9[6 and
6\ are chosen for Pr\ one representing gases and the other
representing liquids[ Three values\ 9[0\ 9[4 and 0\ are
chosen for x:L except for Newtonian ~uids in which case
the parameter L0 is equal to the Prandtl number and has
no x:L dependency[

In Table 2 the numerical results of u?i"9# are presented
for n � 9[41 and L0 � 0[522[ In Table 3\ these results are
given for n � 0[1 and L0 � 9[708[ The results for more
extensive values of n and L0 are given in ð06Ł[

4[ Signi_cant momentum and heat transfer quantities

Once the universal velocity and temperature functions
are calculated\ quantities such as the local friction
coe.cient and the Nusselt number can readily be calcu!
lated[ The only other information needed is the injection
distribution at the plate surface[

The shear stress exerted by the ~uid on the plate is
given by

tw � tyx =y�9 � m9 0
1u
1y1

n

by�9

[ "28#

De_ning the local friction coe.cient as cf �"tw:rU1
�:1#

and writing it in a form analogous to that for a New!
tonian ~uid gives

0
1

cf Re0:"n¦0# � $n"n¦0#
x
L%

−0
n¦0

6 f ý9"9#

¦"n¦0#j
dL
dj

f ?0"9#¦"n¦0#1j1 d1L
dj1

f ý1"9#¦ = = =7
n

[ "39#

The heat ~ux at the wall is given by

qw � −k
1T
1y by�9

[ "30#

The Nusselt number is expressed as

Nu Re"−0#:"n¦0#

�
hL
k

Re"−0#:"n¦0# � L
1u

1y by�9

Re"−0#:"n¦0#

� $n"n¦0#
x
L%

−0
0¦n

6u?9"9#

¦"n¦0#j
dL
dj

u?0"9#¦"n¦0#j
dL0

dj
u?1"9#

¦"n¦0#1j1 d1L
dj1

u?2"9#

¦"n¦0#1j1 d1L0

dj1
u?3"9#¦ = = =7[ "31#

5[ Application

In this section it is demonstrated how the general solu!
tions can be applied for a special case[ The simplest case
for this problem is when the injection velocity takes the
form V"j#:U� � Kj−ðn:"n¦0#Ł\ where K is a constant[ In
this case\ the injection parameter L becomes constant
and the similarity solution applies for the velocity _eld\
i[e[\ only the _rst term in equation "07# is required[
However\ no similarity solution exists for the temperature
_eld even in this case[ The similarity solution has been
studied for the velocity _eld by Vajravelu and Mohapatra
ð03Ł for a Newtonian ~uid and by Akcay and Yukselen
ð07Ł for a non!Newtonian ~uid[ The most common and
easiest laboratory simulation is for a constant injection
along the length of the plate[ For this case\ the similarity
solution cannot be applied to either the velocity or the
temperature _eld[ For this case
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Table 2
Numerical results of u?i"9# for n � 9[419 and L0 � 0[522 "L0 corresponding to Pr � 6 and x:L � 9[0#

l L u?9"9# u?0"9#×09 u?1"9#×09 u?2"9#×091 u?3"9#×091

9 −1[49 3[085622 9[177333 −9[702726 −9[985999 9[442108
−0[49 1[595693 9[456289 −9[763041 −9[302678 9[898976
−9[64 0[359444 0[924929 −9[680894 −0[126924 0[058986
−9[14 9[656666 0[361586 −9[426884 −1[213150 0[919990

9[99 9[361518 0[480061 −9[215262 −1[719392 9[607416
9[49 9[975276 9[833721 9[916084 −0[856097 9[995944
0[99 9[990565 9[940892 9[996215 −9[002198 −9[900766

9[0 −1[49 3[065065 9[103410 −9[651021 −9[940624 9[408719
−0[49 1[461285 9[317080 −9[793507 −9[181716 9[733106
−9[64 0[393717 9[707197 −9[602489 −9[884892 0[961581
−9[14 9[589016 0[107774 −9[343938 −1[916582 9[774879

9[99 9[275476 0[298584 −9[128108 −1[371404 9[438571
9[49 9[921412 9[312502 9[915570 −0[998893 −9[924652
9[64 9[990399 9[919733 9[992190 −9[092961 −9[995539

9[1 −1[49 3[044728 9[024909 −9[609871 −9[902068 9[377872
−0[49 3[097979 9[029915 −9[271237 −9[910926 9[297410
−9[64 0[233231 9[376310 −9[514339 −9[647761 9[862763
−9[14 9[487272 9[539838 −9[244393 −0[672783 9[621688

9[99 9[179229 9[302045 −9[031278 −1[379022 9[234590
9[19 9[982991 −9[266917 −9[907117 −3[242747 9[924835

Table 3
Numerical results of u?i"9# for n � 0[1 and L0 � 9[708 "L0 corresponding to Pr � 9[6 and x:L � 9[4#

l L u?9"9# u?0"9#×09 u?1"9#×09 u?2"9#×091 u?3"9#×091

9 −1[49 1[115084 9[223778 −0[502671 −9[166994 0[491390
−0[49 0[363665 9[359639 −0[374963 −9[353874 0[635283
−9[64 9[831164 9[462039 −0[041089 −9[559566 0[598265
−9[14 9[500070 9[541490 −9[666523 −9[705604 0[116208

9[99 9[344987 9[585787 −9[437713 −9[898756 9[822944
9[09 9[283599 9[606891 −9[341192 −9[843126 9[686583
9[29 9[165550 9[665444 −9[145597 −0[963507 9[493075
9[49 9[059394 9[810517 −9[960573 −0[236568 9[087120

9[0 −1[49 1[109715 9[296478 −0[457256 −9[146221 0[356648
−0[49 0[343298 9[319811 −0[326387 −9[318446 0[690706
−9[64 9[804146 9[404832 −0[986223 −9[590043 0[434430
−9[14 9[465396 9[460769 −9[600120 −9[614857 0[024730

9[99 9[302487 9[489513 −9[361280 −9[678820 9[706077
9[09 9[238965 9[481462 −9[269553 −9[706050 9[557815
9[29 9[105306 9[402325 −9[050070 −9[786480 9[226515

9[1 −1[49 1[084010 9[166841 −0[410363 −9[127082 0[321833
−0[49 0[322069 9[263512 −0[276583 −9[282651 0[544816
−9[64 9[775569 9[328808 −0[928525 −9[426730 0[368459

9[99 9[253961 9[164171 −9[273693 −9[573870 9[570055
9[09 9[189804 −9[922388 −9[162052 −0[936100 9[497826
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Vw"x# � v9 "32#

L �
Re
n

v9

U�

ð"n¦0#jŁn:"n¦0#[ "33#

The parameter L0 is independent of the injection dis!
tribution

L0 � n
m9

ra 0
U�

L 1
n−0

ð"n¦0#jŁ "0−n#:"0¦n# "34#

and the coe.cients of the universal functions in the
MerkÐChao series are

"n¦0#j
dL
dj

� nL "35#

"n¦0#1j1 d1L
dj1

� −nL "36#

"n¦0#j
dL0

dj
�"0−n#L0 "37#

and

"n¦0#1j1 d1L0

dj1
� −1n"0−n#L0[ "38#

The dimensionless axial velocity pro_le is

f ?� f ?9¦nLf ?0−nLf ?1¦ = = = [ "49#

One can _nd the local friction coe.cient by knowing the
values of f ýi"9#]

0
1

cf Re0:"n¦0# � $n"n¦0#
x
L%

−0
n¦0

" f ý9"9#

¦nLf ?0"9#−nLf ý1"9#¦ = = = #n[ "40#

There is an order of magnitude reduction between the
successive fi values[ As the values of L are limited within
a certain range\ the magnitude of the coe.cients is not
large enough to alter this reduction signi_cantly[ Hence
the series converges rapidly and the _rst three terms give
an accurate solution[

The dimensionless temperature is

u � u9¦nLu0¦"0−n#L0u1−nLu2

−1n"0−n#L0u3¦ = = = "41#

and the Nusselt number can be calculated by knowing
the values of u?i"9#]

Nu Re"−0#:"n¦0# � $n"n¦0#
x
L%

−0
0¦n

"u?9"9#

¦nLu?0"9#¦"0−n#L0u?1"9# "42#

−nLu?2"9#−1n"0−n#u?3"9#¦ = = = #[

In this case\ the successive odd numbered and even num!
bered terms decrease at a much faster rate than the terms

in the momentum solution[ In Table 4\ the quantities
0
1
cf Re0:"n¦0# and Nu Re"−0#:"n¦0# are given for few cases

when there is constant injection:suction[
The convergence of equations "40# and "42# is very

good for the parameter range studied[ For example\ for
n � 9[118\ l � 9\ and L � 9[64\ the magnitude of the _rst
term in equation "40# is 85[3) of the value of the whole
series[ A more detailed study of the convergence of these
series is available in ð06Ł[

The dimensionless velocity and temperature pro_les
given by equations "49# and "41#\ respectively\ can be
used to observe the e}ect of various parameters on the
behavior of the boundary layer[ The thickness of the
momentum boundary layer for _xed l and L is largely
determined by the power!law constant n\ which deter!
mines by equation "3# how fast viscous momentum is
transferred through the ~uid layers in the boundary layer[
The momentum boundary layer thickness decreases sig!
ni_cantly with increasing n\ and\ conversely\ the velocity
gradient at the wall increases as can be seen from the
values in Tables 0 and 1[ The value of n also in~uences
the thermal boundary layer thickness in the same manner\
but to a lesser extent[ The thermal boundary layer thick!
ness primarily depends on the magnitude of the par!
ameter L0\ which contains the Prandtl number[ If L0 is
large\ the thermal boundary layer thickness is going to
be small and the temperature gradient at the wall is large[
At constant L0 or Pr values\ this thickness decreases with
n[ These e}ects have been mentioned by Kim et al[ ð08Ł
and more detail is given in ð06Ł[

Injecting ~uid into the boundary layer increases both
the momentum and thermal boundary layer thicknesses
as shown in Figs 1 and 2\ respectively[ As a consequence
of this\ the velocity and temperature gradients at the
surface decrease\ resulting in lower friction coe.cients
and Nusselt numbers at the wall\ as listed in Table 4[ As
is also shown in these _gures and table\ suction has
exactly the opposite e}ect[ Increasing the suction
increases the velocity and temperature gradients at the
wall by decreasing the momentum and thermal boundary
layer thicknesses[ This is true for all values of n and l

studied in ð06Ł[
The e}ect of the plate velocity ratio parameter\ l\ is

somewhat di}erent[ When there is injection\ increasing l

at a constant value of L increases the momentum bound!
ary layer thickness\ which decreases the wall velocity
gradient and results in a lower friction coe.cient[ This is
also true when L � 9[ When there is suction\ increasing
l at a constant value of L has the opposite e}ect[ Thus\
when the plate is moved with a greater speed opposite to
the mainstream\ the e}ects of suction and injection are
enhanced[ At a given n and l\ the decrease:increase in
wall shear stress with respect to L for the case of injec!
tion:suction is almost constant over the entire range of
L values presented ð06Ł[ This decrease:increase is larger
at higher values of l[
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Table 4
Numerical results of 0

1
cf Re0:"n¦0# and Nu Re"−0#:"n¦0# for the case of constant injection:suction

n l L x:L 0

1
cf Re0:"n¦0# L0 Nu Re"−0#:"n¦0#

9[41 −9[4 9[855 9[721294 9[227 9[333948
9 9 9[855 9[507066 9[227 9[293080

9[4 9[855 9[317678 9[227 9[073771
−9[4 9[855 9[747511 9[227 9[312460

9[0 9 9[855 9[509957 9[227 9[161836
9[4 9[855 9[270023 9[227 9[025145

0 −9[4 9[696 9[610308 9[6 9[442687
9 9 9[696 9[283774 9[6 9[237946

9[4 9[696 9[013742 9[6 9[063561
−9[4 9[696 9[648146 9[6 9[422031

9[0 9 9[696 9[276583 9[6 9[204917
9[3 9[680 9[003620 9[6 9[020764

0[1 −9[4 9[523 9[643454 9[837 9[540327
9 9 9[523 9[262468 9[837 9[372380

9[4 9[523 9[955303 9[837 9[065174
−9[4 9[523 9[686548 9[837 9[516423

9[0 9 9[523 9[255153 9[837 9[240869
9[2 9[727 9[006451 9[837 9[057790

Fig[ 1[ E}ect of injection:suction on dimensionless velocity pro_les for n � 9[605 and l � 9[0[
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Fig[ 2[ E}ect of injection:suction on dimensionless temperature pro_les for n � 9[41\ l � 9 and L0 � 9[227[

It is interesting to note that the e}ect of the plate
velocity parameter l on the heat transfer is di}erent from
its e}ect on the momentum transfer[ Increasing l at a
constant value of L decreases the temperature gradient
and the Nusselt number at the surface in both cases of
suction and injection[ Figure 3 shows this e}ect of plate
velocity on the dimensionless temperature pro_les when
injection is present[ For the case of constant suction\ a
similar trend of the temperature pro_le is observed ð06Ł[
Table 4 shows the same behavior for the Nusselt number[

The critical value of L\ which is the maximum value of

Fig[ 3[ E}ect of plate velocity on dimensionless temperature pro_les for n � 9[41 and L0 � 2[268 with injection present[

the injection parameter\ is also a strong function of the
power!law constant n\ and the plate velocity ratio\ l[ At
constant n\ the critical value decreases with l[ At constant
l\ the critical value decreases with n but this dependence
is less than that in the former case ð06Ł[

6[ Conclusions

The momentum and heat transfer in the laminar non!
Newtonian boundary layer of a moving ~at plate with
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arbitrary injection:suction at the surface have been ana!
lyzed[ The main objective of this study\ that of obtaining
boundary layer solutions for any form of the ~uid injec!
tion:suction distribution along the surface\ is achieved by
absorbing the injection:suction velocity into the gov!
erning equations[ Then\ by using the MerkÐChao series
expansion\ those equations are decomposed into an in_!
nite sequence of ordinary di}erential equations[ The solu!
tions to these equations are expressible in terms of uni!
versal functions\ which are independent of the
injection:suction velocity distribution at the surface[ This
is a signi_cant improvement over the previous similarity
solutions\ which are applicable only for a particular form
of the injection distribution[

The present method of obtaining the solution for a
particular injection:suction pro_le is illustrated for the
case of constant velocity at the plate surface[ For this
case\ the convergence of the MerkÐChao series is excel!
lent[ The e}ects of the injection parameter and the plate
velocity ratio on the velocity and temperature pro_les
and on the friction coe.cient and Nusselt number at the
wall are discussed[ Increasing the value of the injection
parameter reduces the velocity and the temperature
gradients at the wall and decreases the friction coe.cient
and the Nusselt number signi_cantly[ Suction has exactly
the opposite e}ects[ Increasing the plate velocity ratio
decreases the friction coe.cient and the Nusselt number
at the wall when injection is present[ With suction present\
increasing the plate velocity ratio increases the friction
coe.cient but decreases the Nusselt number[

The requirement that the injection velocity be small
compared to the mainstream velocity in order to validate
the boundary layer assumptions limits the use of the
present solution procedure to such cases where the injec!
tion parameter is below a certain critical value[ The criti!
cal values found with the present numerical procedure
are in close agreement with those reported in previous
works[ This critical value decreases as the power!law
constant increases[ Also\ at a given value of the power!
law constant\ the critical value decreases drastically with
the plate velocity ratio[
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